Coordinated microRNA/mRNA expression profiles reveal a putative mechanism of corneal epithelial cell transdifferentiation from skin epidermal stem cells

نویسندگان

  • Yanjie Guo
  • Xiya Ma
  • Weini Wu
  • Mingyan Shi
  • Junlong Ma
  • Yaping Zhang
  • Erkang Zhao
  • Xueyi Yang
چکیده

Skin epidermal stem cells (SESCs), which share a single origin with corneal epithelial cells (CECs), are considered to be one of the most ideal seed cells for the construction of tissue engineered corneas. However, the mechanism underlying the transdifferentiation of SESCs to CECs has not been fully elucidated. In the present study, to identify critical microRNAs (miRNAs/miRs) and genes that regulate the transdifferentiation of SESCs to CECs, SESCs and CECs were collected from sheep and used for small RNA sequencing and mRNA microarray analyses. Among the differentially expressed miRNAs and genes, 36 miRNAs were downregulated and 123 genes were upregulated in the CECs compared with those in the SESCs. miR‑10b exhibited the largest change in expression between the cell types. Target genes of the 36 downregulated miRNAs were predicted and a computational approach demonstrated that these target genes may be involved in several signaling pathways, including the 'PI3K signaling pathway', the 'Wnt signaling pathway' and the 'MAPK signaling pathway', as well as in 'focal adhesion'. Comparison of these target genes to the 123 upregulated genes identified 43 intersection genes. A regulatory network of these 43 intersection genes and its correlative miRNAs were constructed, and three genes (dedicator of cytokinesis 9, neuronal differentiation 1 and activated leukocyte cell adhesion molecule) were found to have high interaction frequencies. The expression levels of 7 randomly selected miRNAs and the 3 intersection genes were further validated by reverse transcription-quantitative polymerase chain reaction. It was found that miR‑10b, the Wnt signaling pathway and the 3 intersection genes may act together and serve a critical role in the transdifferentiation process. This study identified miRNAs and genes that were expressed in SESCs and CECs that may assist in uncovering its underlying molecular mechanism, as well as promote corneal tissue engineering using epidermal stem cells for clinical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corneal Limbal Microenvironment Can Induce Transdifferentiation of Hair Follicle Stem Cells into Corneal Epithelial-like Cells

The aim of this study was to investigate the transdifferentiation potential of murine vibrissa hair follicle (HF) stem cells into corneal epithelial-like cells through modulation by corneal- or limbus-specific microenvironmental factors. Adult epithelial stem cells were isolated from the HF bulge region by mechanical dissection or fluorescence-activated cell sorting using antibodies to alpha6 i...

متن کامل

Comparison of Ultra Structure and Gene Expression of Cultured Limbal Stem Cells and Fresh Conjunctival, Limbal and Corneal Tissues

Purpose: The present study intends to show the characteristics of cultured limbal stem cell (CLSCs) and to compare them with normal Conjunctival (C), Limbal (L) and Cornea (K) tissues. Materials and Methods: The expressions of a set of genes potentially involved in differentiation and stemness function of limbal stem cells were assessed in freshly prepared limbal, corneal, and conjunctival tis...

متن کامل

Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time....

متن کامل

Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles

Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...

متن کامل

Transdifferentiation of corneal epithelium: evidence for a linkage between the segregation of epidermal stem cells and the induction of hair follicles during embryogenesis.

Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2018